$\left[\mathrm{Mo}_{2} \mathrm{Cl}_{4} \mathrm{O}_{4}\right]^{2-}$ anion. The only non-bonding interactions involving the hydrogen chloride solvate species are those indicative of hydrogen bonding between symmetry-related HCl molecules $\left[\mathrm{Cl} \cdots \mathrm{Cl}^{\prime}=\right.$ 2.87 (1) \AA]. This situation is different from that in other HCl solvates of transition-metal complexes; recent structural studies (Endres \& Schlicksupp, 1979, 1980) have revealed that HCl in a crystal lattice is usually hydrogen-bonded to O and/or N atoms of the metal-containing moiety.

The authors wish to thank the Natural Sciences and Engineering Research Council of Canada for financial support (to PMB and KAK) and a postgraduate scholarship to KJM. The mass spectra were recorded by Dr R. Yamdagni, and helpful discussions with Drs P. W. Codding, J. F. Richardson and R. T. Oakley are gratefully acknowledged.

References

Boorman, P. M., Codding, P. W., Kerr, K. A., Moynihan, K. J. \& Patel, V. D. (1982). Can. J. Chem. In the press.

Chisholm, M. H., Huffman, J. C., Kirkpatrick, C. C., Leonelli, J. \& Folting, K. (1981). J. Am. Chem. Soc. 103, 6093-6099.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Cotton, F. A. \& Murillo, C. A. (1975). Inorg. Chem. 14, 2467-2469.
Dance, I. G., Wedd, A. G. \& Boyd, I. W. (1978). Aust. J. Chem. 31, 519-526.
Endres, H. \& Schlicksupp, L. (1979). Acta Cryst. B35, 3035-3036.
Endres, H. \& Schlicksupp, L. (1980). Acta Cryst. B36, 715-716.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Mattes, R., Altmeppen, D. \& Fetzer, M. (1976). Z. Naturforsch. Teil B, 31, 1356-1359.
Patel, V. D. \& Boorman, P. M. (1982). Can. J. Chem. In the press.
Patel, V. D., Boorman, P. M., Kerr, K. A. \& Moynihan, K. J. (1982). Inorg. Chem. 21, 1383-1387.

Spivak, B. \& Dori, Z. (1975). Coord. Chem. Rev. 17, 99-162.
Stewart, J. M. (1976). XRAY 76. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1982). B38, 2261-2264

$1,1,1,2,2,2,3,3-O c t a c a r b o n y l-2,3 ; 3,1-d i-\mu$-hydrido- μ_{3}-phenylphosphido-3-triphenylphosphine-triangulo-triruthenium

By M. J. Mays and P. L. Taylor
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England
and K. Henrick
Department of Chemistry, The Polytechnic of North London, Holloway, London N7 8DB, England

(Received 25 January 1982; accepted 25 March 1982)

Abstract

C}_{32} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{Ru}_{3}, \quad\left[\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\left(\mu_{3}-\right.\right.\) $\mathrm{PPh})$], $M_{r}=899.68$, monoclinic, $P 2_{1} / c, a=$ 12.094 (3), $b=15.044$ (4), $c=18.727$ (4) $\AA, \beta=$ $94.00(3)^{\circ}, U=3398.9 \AA^{3}, D_{c}=1.758 \mathrm{Mg} \mathrm{m}^{-3}$, $Z=4, \mu(\mathrm{Mo} K \alpha)=1.31 \mathrm{~mm}^{-1}, F(000)=1760$. Final R and R_{w} are 0.027 and 0.030 respectively for 4964 unique observed reflections $\left[I \geq 3 \sigma(I) ; 3 \leq \theta \leq 25^{\circ}\right.$]. The three Ru atoms define an isosceles triangle with the triphenylphosphine group bonded trans to the $\mu_{3}-\mathrm{PPh}$ group onto the Ru atom associated with two μ - H bridges, $\mathrm{P}-\mathrm{Ru}-\mathrm{P}=164.8(1)^{\circ}$.

0567-7408/82/082261-04\$01.00

Introduction. Hydrido clusters involving $\mu_{3}-\mathrm{PR}$ bridging units are of interest because of the presence of reactive H atoms attached to an intact metal triangle and many clusters of this type have been prepared (e.g. Natarajan, Scheidsteger \& Huttner, 1981; Natarajan, Zsolnai \& Huttner, 1981; Huttner, Schneider, Mohr \& von Seyerl, 1980; Iwasaki, Mays, Raithby, Taylor \& Wheatley, 1981). However, relatively little attention has been given to the effect of substitution on this type of cluster and the influence of such a substitution on the metal-metal bonding and the cluster geometry.
© 1982 International Union of Crystallography

The title compound is obtained as a minor product from the reaction of $\left[\mathrm{HRu}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{PPh}\right)\right]^{-}$with $\left[\mathrm{Rh}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$(Mays, Raithby, Taylor \& Henrick, 1982). Recrystallization from hexane gave yellow crystals. Intensities were recorded on a Philips PW 1100 diffractometer with graphite-monochromated Mo $K \alpha$ radiation, $\theta-2 \theta$ scans, from a crystal $0.21 \times$ $0.23 \times 0.21 \mathrm{~mm}$. Lp corrections, and a semi-empirical absorption correction based on a pseudo-ellipsoid model and 426 azimuthal scan data for eight independent reflections were applied; transmission factors ranged from 0.931 to 0.972 for the full data set.

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (\AA^{2})

$U_{\text {eq }}=\frac{1}{5}\left(U_{11}+U_{22}+U_{33}\right)$.				
	x	y	z	$U_{\text {eq }}$
$\mathrm{Ru}(1)$	0.02818 (2)	$0 \cdot 12025$ (2)	$0 \cdot 19608$ (2)	0.0343 (2)
$\mathrm{Ru}(2)$	0.23074 (2)	$0 \cdot 18598$ (2)	0.13355 (2)	0.0355 (2)
$\mathrm{Ru}(3)$	$0 \cdot 10242$ (2)	0.29552 (2)	0.22973 (2)	0.0337 (2)
C(11)	0.0632 (3)	0.0698 (2)	0.2915 (2)	0.046 (2)
O(11)	0.0816 (3)	0.0423 (2)	0.3470 (2)	0.069 (2)
C(12)	-0.0056 (4)	0.0183 (3)	$0 \cdot 1370$ (2)	0.056 (3)
O(12)	-0.0242 (4)	-0.0417 (2)	$0 \cdot 1030$ (2)	0.098 (3)
C(13)	-0.1226 (3)	$0 \cdot 1461$ (3)	$0 \cdot 2104$ (2)	0.052 (2)
O(13)	-0.2119 (2)	$0 \cdot 1617$ (2)	0.2180 (2)	0.081 (2)
C(21)	$0 \cdot 2258$ (3)	$0 \cdot 1131$ (3)	0.0510 (2)	0.059 (3)
$\mathrm{O}(21)$	$0 \cdot 2199$ (3)	0.0689 (3)	0.0025 (2)	0.102 (3)
C(22)	0.2892 (3)	0.2841 (3)	0.0853 (2)	0.060 (3)
$\mathrm{O}(22)$	0.3208 (3)	0.3460 (3)	0.0587 (2)	0.096 (3)
C(31)	0.1462 (3)	0.2725 (3)	0.3304 (2)	0.044 (2)
O(31)	0.1689 (3)	0.2598 (2)	0.3889 (2)	0.068 (2)
C(32)	-0.0400 (3)	0.3394 (3)	$0 \cdot 2466$ (2)	0.046 (2)
$\mathrm{O}(32)$	-0.1262 (2)	$0 \cdot 3650$ (2)	0.2561 (2)	0.068 (2)
C(33)	$0 \cdot 1654$ (3)	0.4103 (3)	0.2140 (2)	0.052 (2)
O(33)	0.2051 (3)	0.4764 (2)	$0 \cdot 2020$ (2)	0.084 (2)
P(1)	0.05072 (7)	0.23667 (6)	$0 \cdot 12017$ (5)	0.0343 (5)
C(111)	-0.0272 (3)	$0 \cdot 2773$ (3)	0.0411 (2)	0.042 (2)
C(112)	-0.0628 (3)	0.2192 (3)	-0.0120 (2)	0.062 (3)
C(113)	-0.1200 (4)	$0 \cdot 2524$ (5)	-0.0744 (3)	0.082 (4)
C(114)	-0.1411 (4)	0.3395 (5)	-0.0824 (3)	0.086 (4)
C(115)	-0.1084 (4)	$0 \cdot 3950$ (4)	-0.0299 (3)	0.087 (4)
C(116)	-0.0509 (4)	$0 \cdot 3671$ (3)	0.0326 (3)	0.063 (3)
$\mathrm{P}(2)$	0.40931 (7)	$0 \cdot 13344$ (6)	$0 \cdot 18048$ (5)	0.0360 (5)
C(211)	0.4537 (3)	0.0236 (3)	0.1499 (2)	0.044 (2)
C(212)	0.5650 (4)	0.0022 (3)	$0 \cdot 1460$ (3)	0.062 (3)
C(213)	0.5954 (4)	-0.0822 (4)	0.1271 (3)	0.074 (3)
C(214)	0.5169 (5)	-0.1463 (3)	0.1124 (3)	0.074 (3)
C(215)	0.4097 (5)	-0.1270 (3)	0.1164 (3)	0.075 (4)
C(216)	0.3761 (4)	-0.0418 (3)	0.1351 (2)	0.056 (3)
C(221)	0.4362 (3)	0.1211 (2)	0.2775 (2)	0.039 (2)
C(222)	0.5431 (3)	$0 \cdot 1128$ (3)	$0 \cdot 3092$ (2)	0.064 (3)
C(223)	0.5574 (4)	0.0955 (4)	0.3817 (3)	0.076 (3)
C(224)	0.4689 (4)	0.0896 (3)	0.4240 (2)	0.056 (3)
C(225)	0.3644 (3)	0.0978 (3)	$0 \cdot 3925$ (2)	0.054 (2)
C(226)	0.3476 (3)	$0 \cdot 1132$ (3)	0.3201 (2)	0.048 (2)
C(231)	0.5158 (3)	0.2109 (2)	$0 \cdot 1538$ (2)	0.040 (2)
C(232)	0.5633 (3)	0.2025 (3)	0.0891 (2)	0.054 (2)
C(233)	0.6334 (4)	0.2681 (4)	0.0673 (3)	0.071 (3)
C(234)	0.6553 (4)	0.3420 (4)	0. 1090 (3)	0.075 (3)
C(235)	0.6081 (4)	0.3513 (3)	$0 \cdot 1727$ (3)	0.075 (3)
C(236)	0.5383 (4)	$0 \cdot 2859$ (3)	0.1953 (2)	0.057 (3)

Table 2. Selected bond lengths (\AA) and angles (${ }^{\circ}$)

Bond lengths within the phenyl rings have been deposited.

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.958(1)$	$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$2.842(1)$
$\mathrm{Ru}(1)-\mathrm{C}(11)$	$1.961(4)$	$\mathrm{Ru}(1)-\mathrm{C}(12)$	$1.919(4)$
$\mathrm{Ru}(1)-\mathrm{C}(13)$	$1.901(4)$	$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.284(1)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.959(1)$	$\mathrm{Ru}(2)-\mathrm{C}(21)$	$1.892(5)$
$\mathrm{Ru}(2)-\mathrm{C}(22)$	$1.894(5)$	$\mathrm{Ru}(2)-\mathrm{P}(1)$	$2.304(1)$
$\mathrm{Ru}(2)-\mathrm{P}(2)$	$2.408(1)$	$\mathrm{Ru}(3)-\mathrm{C}(31)$	$1.953(4)$
$\mathrm{Ru}(3)-\mathrm{C}(32)$	$1.892(4)$	$\mathrm{Ru}(3)-\mathrm{C}(33)$	$1.919(4)$
$\mathrm{Ru}(3)-\mathrm{P}(1)$	$2.282(1)$	$\mathrm{C}(11)-\mathrm{O}(11)$	$1.126(5)$
$\mathrm{C}(12)-\mathrm{O}(12)$	$1.118(6)$	$\mathrm{C}(13)-\mathrm{O}(13)$	$1.124(5)$
$\mathrm{C}(21)-\mathrm{O}(21)$	$1.125(6)$	$\mathrm{C}(22)-\mathrm{O}(22)$	$1.133(6)$
$\mathrm{C}(31)-\mathrm{O}(31)$	$1.127(5)$	$\mathrm{C}(32)-\mathrm{O}(32)$	$1.135(5)$
$\mathrm{C}(33)-\mathrm{O}(33)$	$1.132(5)$	$\mathrm{P}(1)-\mathrm{C}(111)$	$1.806(4)$
$\mathrm{P}(2)-\mathrm{C}(211)$	$1.841(4)$	$\mathrm{P}(2)-\mathrm{C}(221)$	$1.833(4)$

$\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	61.3 (1)	$\mathrm{C}(11)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	111.0 (1)
$\mathrm{C}(11)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	96.4 (1)	$\mathrm{C}(12)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$100 \cdot 8$ (1)
$\mathrm{C}(12)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	157.0 (1)	$\mathrm{C}(12)-\mathrm{Ru}(1)-\mathrm{C}(11)$	103.9 (2)
$\mathrm{C}(13)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	144.7 (1)	$\mathrm{C}(13)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	94.0 (1)
$\mathrm{C}(13)-\mathrm{Ru}(1)-\mathrm{C}(11)$	95.7 (2)	$\mathrm{C}(13)-\mathrm{Ru}(1)-\mathrm{C}(12)$	94.4 (2)
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	50.1 (1)	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	51.5 (1)
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(11)$	$146 \cdot 8$ (1)	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(12)$	$106 \cdot 5$ (1)
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(13)$	95.0 (1)	$\mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	57.4 (1)
$\mathrm{C}(21)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	98.6 (1)	$\mathrm{C}(21)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	146.3 (1)
$\mathrm{C}(22)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	142.8 (1)	$\mathrm{C}(22)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	94.9 (1)
$\mathrm{C}(22)-\mathrm{Ru}(2)-\mathrm{C}(21)$	93.0 (2)	$\mathrm{P}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	49.6 (1)
$\mathrm{P}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	49.5 (1)	$\mathrm{P}(1)-\mathrm{Ru}(2)-\mathrm{C}(21)$	97.3 (1)
$\mathrm{P}(1)-\mathrm{Ru}(2)-\mathrm{C}(22)$	94.1 (1)	$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	119.5 (1)
$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	117.1(1)	$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{C}(21)$	94.8 (1)
$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{C}(22)$	94.3 (1)	$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{P}(1)$	164.8 (1)
$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	61.3 (1)	$\mathrm{C}(31)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	96.3 (1)
$\mathrm{C}(31)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	111.7 (1)	$\mathrm{C}(32)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	94.8 (1)
$\mathrm{C}(32)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	144.9 (1)	$\mathrm{C}(32)-\mathrm{Ru}(3)-\mathrm{C}(31)$	95.1 (2)
$\mathrm{C}(33)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	157.5 (1)	$\mathrm{C}(33)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	$100 \cdot 2$ (1)
$\mathrm{C}(33)-\mathrm{Ru}(3)-\mathrm{C}(31)$	103.0 (2)	$\mathrm{C}(33)-\mathrm{Ru}(3)-\mathrm{C}(32)$	95.0 (2)
$\mathrm{P}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	51.5 (1)	$\mathrm{P}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	$50 \cdot 1$ (1)
$\mathrm{P}(1)-\mathrm{Ru}(3)-\mathrm{C}(31)$	146.9 (1)	$\mathrm{P}(1)-\mathrm{Ru}(3)-\mathrm{C}(32)$	95.2 (1)
$\mathrm{P}(1)-\mathrm{Ru}(3)-\mathrm{C}(33)$	$107 \cdot 3$ (1)	$\mathrm{O}(11)-\mathrm{C}(11)-\mathrm{Ru}(1)$	178.4 (4)
$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{Ru}(1)$	179.1 (4)	$\mathrm{O}(13)-\mathrm{C}(13)-\mathrm{Ru}(1)$	179.2 (4)
$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{Ru}(2)$	178.0 (4)	$\mathrm{O}(22)-\mathrm{C}(22)-\mathrm{Ru}(2)$	$176 \cdot 1$ (4)
$\mathrm{O}(31)-\mathrm{C}(31)-\mathrm{Ru}(3)$	178.3 (4)	$\mathrm{O}(32)-\mathrm{C}(32)-\mathrm{Ru}(3)$	179.0 (4)
$\mathrm{O}(33)-\mathrm{C}(33)-\mathrm{Ru}(3)$	$176 \cdot 7$ (4)	$\mathrm{Ru}(2)-\mathrm{P}(1)-\mathrm{Ru}(1)$	$80 \cdot 3$ (1)
$\mathrm{Ru}(3)-\mathrm{P}(1)-\mathrm{Ru}(1)$	77.0 (1)	$\mathrm{Ru}(3)-\mathrm{P}(1)-\mathrm{Ru}(2)$	80.4 (1)
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{Ru}(1)$	133.8 (1)	$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{Ru}(2)$	129.5 (1)
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{Ru}(3)$	134.5 (1)	$\mathrm{C}(112)-\mathrm{C}(111)-\mathrm{P}(1)$	119.9 (3)
$\mathrm{C}(116)-\mathrm{C}(111)-\mathrm{P}(1)$	121.0 (3)		
$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{Ru}(2)$	117.1 (1)		
$\mathrm{C}(221)-\mathrm{P}(2)-\mathrm{Ru}(2)$	119.2 (1)	$\mathrm{C}(221)-\mathrm{P}(2)-\mathrm{C}(211)$	$100 \cdot 5$ (2)
$\mathrm{C}(231)-\mathrm{P}(2)-\mathrm{Ru}(2)$	108.7 (1)	$\mathrm{C}(231)-\mathrm{P}(2)-\mathrm{C}(211)$	$105 \cdot 1$ (2)
$\mathrm{C}(231)-\mathrm{P}(2)-\mathrm{C}(221)$	$104 \cdot 8$ (2)	$\mathrm{C}(212)-\mathrm{C}(211)-\mathrm{P}(2)$	121.9 (3)

Equivalents were averaged to give 4964 unique observed intensities. Cell dimensions were derived from the angular measurements of 25 strong reflections ($10 \cdot 0 \leq \theta \leq 15 \cdot 0^{\circ}$).

The Ru atoms were located from a Patterson map; positions of all the other non-hydrogen atoms were found from a subsequent difference synthesis. The structure was refined by full-matrix least squares using SHELX (Sheldrick, 1976), with complex neutral-atom scattering factors (International Tables for X-ray Crystallography, 1974) and weights $w=1 / \sigma^{2}(F)$. The parameters refined included anisotropic thermal param-
eters for the non-hydrogen atoms and a common isotropic temperature factor for the phenyl H atoms. The $\mathrm{C}-\mathrm{H}$ atoms were estimated geometrically ($\mathrm{C}-\mathrm{H}$ $1.08 \AA, \mathrm{C}-\mathrm{C}-\mathrm{H} 120.0^{\circ}$) and the positions of the hydrido H atoms were located from a final difference map. The refinement converged to $R=0.027$ and $R_{w}=$ $\sum w^{1 / 2} \Delta / \sum w^{1 / 2}\left|F_{o}\right|=0.030$. The final atomic coordinates for the non-hydrogen atoms are listed in Table 1 and selected bond lengths and angles in Table 2.*

Discussion. The molecular structure of $\left[\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{8^{-}}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\left(\mu_{3}-\mathrm{PPh}\right)\right]$ is shown in Fig. 1. The overall geometry of the structure is a trigonal pyramid with the three Ru atoms lying at the vertices of an isosceles triangle as the base of the pyramid and the μ_{3} phenylphosphido ligand as the apex. The triphenylphosphine ligand bonds to $\mathrm{Ru}(2)$, trans to the $\mu_{3}-\mathrm{PPh}$ group, with $\mathrm{P}(1)-\mathrm{Ru}(2)-\mathrm{P}(2)=164.8(1)^{\circ}$. The eight carbonyl groups are terminal. Two of the $\mathrm{Ru}-\mathrm{Ru}$ bonds are bridged by H atoms, and these $\mathrm{Ru}-\mathrm{Ru}$ distances are longer (average $2.959 \AA$) than the unbridged one $[\operatorname{Ru}(1)-\operatorname{Ru}(3)=2.842(1) \AA]$. The $\mathrm{Ru}-\mathrm{H}$ distances are in the range $1.79-1.85 \AA$ with angles at the H atoms $\mathrm{Ru}(1)-\mathrm{H}(1)-\mathrm{Ru}(2)=109$ and $\mathrm{Ru}(2)-\mathrm{H}(2)-\mathrm{Ru}(3)=110^{\circ}$. The PPh_{3} ligand is bonded to $\mathrm{Ru}(2)$, the Ru atom associated with the two hydrido ligands. \dagger

Fig. 1. An ORTEP (Johnson, 1965) drawing of $\left[\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{8}\right.$ $\left(\mathrm{PPh}_{3}\right)\left(\mu_{3}-\mathrm{PPh}\right)$.

The short bond $R u(1)-R u(3)$ appears to be unaffected by the presence of the phosphine group and its length is not significantly different from the 2.844 (2) \AA in $\left[\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{9}\left\{\mu_{3}-\mathrm{P}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)\right\}\right]$ (Natarajan, Scheidsteger \& Huttner, 1981). However, both of the hydrido-bridged bonds in $\mid \mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\left(\mu_{3}-\right.$ $\mathrm{PPh})$] are significantly longer than those found in $\quad\left[\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{9}\left\{\mu_{3}-\mathrm{P}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)\right\}\right] \quad \mid 2 \cdot 937$, 2.928 (2) \AA].

The triphenylphosphine- $\mathrm{Ru}(2)$ bond length [$2.408(1) \AA$] is longer than the values found for $\left[\mathrm{H}_{4} \mathrm{Ru}_{4}(\mathrm{CO})_{10}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Wilson, Wu, Love \& Bau, 1978) of $2.360,2.359(4) \AA$ and for $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{11^{-}}\right.$ $\left(\mathrm{PPh}_{3}\right)$ (Forbes, Goodhand, Jones \& Hamor, 1979) of $2 \cdot 380$ (6) \AA. In the latter complex the introduction of the phosphine ligand resulted in an expansion of the $R \mathrm{u}_{3}$ triangle, particularly the $\mathrm{Ru}-\mathrm{Ru}$ distance cis to the equatorially bound PPh_{3} ligand, compared to the parent compound $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ (Mason \& Rae, 1968), with $\mathrm{Ru}-\mathrm{Ru}$ distances cis 2.907 (3), trans 2.876 (3), diagonal 2.875 (3) \AA, compared to $2.837,2.849$, and $2.859 \AA$ in $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$. In the comparison of $\left[\mathrm{H}_{4} \mathrm{Ru}_{4}{ }^{-}\right.$ $\left.(\mathrm{CO})_{12}\right]$ and $\left[\mathrm{H}_{4} \mathrm{Ru}_{4}(\mathrm{CO})_{10}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Wilson et al., 1978) the effect of the replacement of the carbonyl ligands by PPh_{3} gave only subtle changes in the geometry of the molecule. The PPh_{3} ligands are bonded transoid to the unbridged $\mathrm{Ru}-\mathrm{Ru}$ bonds and result in a slight decrease in the $\mathrm{Ru}-\mathrm{Ru}$ bonds from 2.786 (1) to 2.772 (2) \AA with an increase in the $\mathrm{Ru}-\mathrm{Ru}(\mu-\mathrm{H})$ bonds from 2.950 (1) to 2.966 (2) \AA.

The $\mu_{3}-\mathrm{PPh}-\mathrm{Ru}$ bond distances found here $[\mathrm{Ru}(1)$, 2.284 (1); $\mathrm{Ru}(2), 2.304$ (1); $\mathrm{Ru}(3), 2.282$ (1) \AA] show a similar pattern in lengths to that found for $\left[\mathrm{H}_{2} \mathrm{Ru}_{3}{ }^{-}\right.$ $\left.(\mathrm{CO})_{9}\left\{\mu_{3}-\mathrm{P}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)\right\}\right]$ where the corresponding distances of $2.275,2.320$ and 2.273 (4) \AA were observed with the longer $\mathrm{Ru}-\mathrm{P}$ distance in both cases associated with the Ru atom bonded to both hydride ligands.

The average $\mathrm{Ru}(1), \mathrm{Ru}(3)$-carbonyl distance is $1.924 \AA$, longer than the average $\mathrm{Ru}(2)$-carbonyl distance of $1.893(5) \AA$. This is the reverse to that in [$\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{9}\left\{\mu_{3}-\mathrm{P}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)\right\}$] where mean values of 1.927 and $1.968 \AA$ respectively were found. This is the most noticeable effect of substitution by the PPh_{3} ligand between these two complexes. The shortening of $M-\mathrm{CO}$ distances where the metal is also attached to a PPh_{3} ligand was also found in $\left[\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right]$ (Benfield, Johnson, Lewis, Raithby, Zuccaro \& Henrick, 1979) and this may be caused by the increased electron density on $\mathrm{Ru}(2)$, as a result of the σ-donor properties of the PPh_{3} ligand, being taken up by back bonding to the carbonyls.

The carbonyls are all approximately linear with a mean $\mathrm{Ru}-\mathrm{C}-\mathrm{O}$ angle of $178 \cdot 1(4)^{\circ}$; the average $\mathrm{C}-\mathrm{O}$ distance is $1 \cdot 127$ (5) \AA.

The $\mu_{3}-\mathrm{P}-\mathrm{C}$ distance $[1.806$ (4) \AA] is shorter than the triphenylphosphine $\mathrm{P}-\mathrm{C}$ distances of 1.832
1.841 (4) \AA [cf. the mean aryl C-P distance of 1.828 (1) \AA for a wide range of structures (Domenicano, Vaciago \& Coulson, 1975)|, while the $\mathrm{C}(116)-\mathrm{C}(111)-\mathrm{C}(112)$ angle in the phosphido ligand [119.1 (4) ${ }^{\circ}$] is only slightly larger than the corresponding angles in the PPh_{3} ligand, mean $=118.7^{\circ}$ (cf. the mean α angle in the PPh_{3} group of $118.5(1)^{\circ}$ (Domenicano et al., 1975)].

The $\mu_{3}-\mathrm{P}$ atom lies -1.55 (1) \AA from the Ru_{3} plane with both the triphenylphosphine P atom and the hydride ligands on the opposite side of this plane at distances of 2.02 (2), 0.86 (7) and 0.82 (7) \AA (for $\mathrm{P}(2)$, $\mathrm{H}(1)$ and $\mathrm{H}(2)$ respectively].

We thank the SERC for financial support. We are grateful to Johnson Matthey \& Co. Ltd for a CASE award (to PLT) and for the generous loan of precious metals.

References

Benfield, R. E., Johnson, B. F. G., Lewis, J., Raithby, P. R., Zuccaro, C. \& Henrick, K. (1979). Acta Cryst. B35, 2210-2212.
domenicano, A., Vaciago, A. \& Coulson, C. A. (1975). Acta Cryst. B31, 1630-1641.
Forbes, E. J., Goodhand, N., Jones, d. L. \& hamor, T. A. (1979). J. Organomet. Chem. 182, 143-154.

Huttner, G., Schneider, J., Mohr. G. \& von Seyerl, J. (1980). J. Organomet. Chem. 191, 161-169.

International Tables for X-ray Crystallography' (1974). Vol. IV. Birmingham: Kynoch Press.

Iwasaki, F., Mays, M. J., Raithby, P. R., Taylor, P. L. \& Wheatley, P. J. (1981). J. Organomet. Chem. 213, 185-206.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Mason, R. \& Rae, A. I. M. (1968). J. Chem. Soc. A. pp. 778-779.
Mays, M. J., Raithby, P. R., Taylor, P. L. \& Henrick, K. (1982). J. Organomet. Chem. 224. C45-C48.

Natarajan, K., Scheidsteger, O. \& Huttner, G. (1981). J. Organomet. Chem. 221, 301-308.

Natarajan, K., Zsolnai, L. \& Huttner, G. (1981). J. Organomet. Chem. 220, 365-381.
Sheldrick, G. M. (1976). SHELX. A program for crystal structure determination. Univ. of Cambridge, England.
Wilson, R. D.. Wu, S. M., Love, R. A. \& Bau. R. (1978). Inorg. Chem. 17, 1271-1280.

Structure of Bromo(ethyl)[(-)- α-isosparteine]magnesium(II)

By Hiroyuki Kageyama, Kunio Miki, Yasushi Kai and nobutami Kasai*
Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan
and Yoshio Oкamoto and Heimei Yuki
Department of Chemistry, Faculty of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560, Japan

(Received 8 January 1982; accepted 30 March 1982)

Abstract

MgBr}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}\right), \mathrm{C}_{17} \mathrm{H}_{31} \mathrm{BrMgN}_{2}\), $M_{r}=367 \cdot 7$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=10.646$ (4), $b=14.491$ (4), $c=11.857$ (3) $\AA, Z=4, D_{x}=1.34 \mathrm{Mg}$ $\mathrm{m}^{-3}, R=0.074$ for 1235 non-zero reflexions. The Mg atom is tetrahedrally coordinated by the C atom of the ethyl group, the Br atom and the two N atoms of the $(-)$ - α-isosparteine. The distortion from tetrahedral geometry of the Mg atom results from repulsion between $(-)-\alpha$-isosparteine and the other ligands.

Introduction. During the study of the asymmetric selective polymerization of racemic methacrylates by Grignard reagent-(-)-sparteine complexes, catalyti-

[^0]cally active $\mathrm{EtMgBr}-(-)$-sparteine and unreactive $\mathrm{EtMgBr}-(-)-\alpha$-isosparteine were isolated as single crystals (Okamoto, Suzuki \& Yuki, 1980; Okamoto, Suzuki, Yuki, Kageyama, Miki, Tanaka \& Kasai, 1980). A prismatic colourless crystal of EtMgBr -$(-)-a$-isosparteine, $0.55 \times 0.38 \times 0.30 \mathrm{~mm}$, was sealed in a glass capillary tube under nitrogen atmosphere. A Rigaku automated four-circle diffractometer was used with graphite-monochromatized Mo $K n$ radiation ($\lambda=$ $0.7107 \AA$). Systematic absences of $h 00$ for $h=2 n+$ $1,0 k 0$ for $k=2 n+1$, and $00 l$ for $l=2 n+1$ indicated the space group to be $P 2,2,2_{1}$. Reflexion intensities (2θ $\leq 50.5^{\circ}$) were measured by the $\theta-2 \theta$ scan technique, the 2θ scan rate being $4^{\circ} \mathrm{min}^{-1}$ and the scan width $\Delta 2 \theta$ $=(2.4+0.7 \tan \theta)^{\circ}$. Backgrounds were counted for © 1982 International Union of Crystallography

[^0]: * To whom all correspondence should be addressed.

 0567-7408/82/082264-03\$01.00

